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Abstract
Ontology development is becoming increasingly mature and as a consequence the question and challenge
arise on how to handle larger amounts of knowledge and data in automated ways. Current approaches on
constructing knowledge graphs are based on machine learning, especially natural language processing.
They are improving in quality and increasingly add quality assurance aspects to ensure better usability
of the data and semantics for machines. However, none of those currently make use of consistency
checking in order to ensure adherence to a consistent schema. In this work, we provide a new approach
that allows for continuous and better quality assurance by integrating reasoner and human in the loop
into the knowledge graph construction process. We show our approach, system and an evaluation of
the results of our system engineering and electronics knowledge graph. The results show an improved
knowledge graph construction according to the metrics of conciseness (succinctness) and consistency
(coherency) of up to 67,4 % and our method decreases development time to train the neural network.

Keywords
hybrid AI, knowledge graph construction, automated consistency checking, AI and human in the loop,
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1. Introduction

Ontologies are a central part of semantic web and knowledge management. They provide a
structured and formal representation of knowledge, which enables machines to reason about
this knowledge. In the context of semantic web, ontologies serve as a common vocabulary for
describing concepts, relationships, and properties of various domains. Constructing knowledge
graphs is a challenge because (1) we are dealing with large amounts of data which are hard
to oversee, supervise and understand. And because (2) the quality of those graphs is often
not good from the ontology engineers perspective. Usually graphs generated by for example
GraphGPT [1] are vast, but lack proper structures to make them coherent. Examples are
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connection with proper super classes or correct taxonomies. One of the ways going forward is
creating the ontology by an ontology or knowledge engineer with care, expertise, background
information and feedback from applications. And then construct a knowledge graph based on
that conceptualization by machine learning techniques. In this way, it is possible to acquire
data fast, automated and easily. However, the machine usually, though using context by the
patterns recognized by the neural model, still usually lacks context and many errors ensue and
low data quality pertain. It is difficult to assess whether the machine made an error or if the
content of the constructed graph is either correct or matches with the intention or the context
of the processed files and data. Here, reasoning approaches based on OWL DL can provide (1)
aid in understanding errors, (2) improving the quality of the domain ontology or knowledge
graph and (3) correcting errors.
Reasoning in the Semantic Web usually has three purposes:

1. checking for concept consistency of definitions or in general of classes and their relation-
ships for example with complex class expressions

2. adding implicit knowledge via axioms with for example transitive object properties,
hasValue restrictions, inverse object properties and others

3. adding if-then conclusion via rules which can be qualitative, but also quantitative with
for example SWRLs Math Bult-In

In this paper we apply reasoning in the context of purpose (1). We construct a knowledge
graph based on a vocabulary called GBO (GENIAL! Basic Ontology) [2]. The construction
process is further based on an NLP transformer which was trained based on the vocabulary
and a wikipedia dataset [3]. Based on this prior work, we now applied the reasoning on the
vocabularies definitions in a novel approach described in detail in section 4. The novelty of the
approach is that it allows for continuous knowledge graph quality assurance in the loop with
concise definitions. At the same time it improves the dataset and accuracy of the tagging. Which
thus also improves the training of neural networks, such as transformers or large language
models. The technical contribution of this paper is the integrated architecture of reasoning and
machine learning, which is both enhanced with the computer and the user. The results show
that such methodology provides a beneficial addition to the knowledge construction pipeline
and can both improve the quality of the graph as well as reduce work for knowledge engineers.

2. Background

2.1. Knowledge Base: GENIAL! Basic Ontology (GBO)

Basic conceptualization of the microelectronics domain in regard to automotive. Basic classes
include hardware, software, systems, quantities, functions, dependencies, roadmap and context
knowledge. GBO is based on BFO and the ISO26262 standard in electronic safety. Figure 1 is a
simplified and shortened version of the relevant classes and axioms to understand the approach
in this paper. As we can see, both hardware and software are structured into hierarchical levels.
Each level is the direct next hierarchical level, indicated by the "has_parts_directly" object
property. Further, all software and hardware hierarchical levels are disjoint. Further hardware,
software, properties and functions are also each disjoint classes. It needs to be noted that the



parts are structured with "only" or universal (all) restrictions, which are more restricting and
make the approach in section 4 more effective. Figure 1 as well as 7 were created with Chowlk
Visual Notation. For symbol clarification we refer to the documentation. 1

Figure 1: Relevant classes and reasoning axioms for approach

2.2. Dataset

We used datasets from related articles in the domain for both tagging for Bi-LSTM neural
network as well as automatic transformer-based methods. These include Wikipedia articles like
"central processing unit", "analog digital converter", "automatic cruise control", and comprises
currently around 20 articles. The articles were selected to represent the domain of electronics
and its most prevalent terms.

2.3. Microelectronics Knowledge Graph

Combining the ML methods and our ontology reference model we construct our microelectronics
knowledge graph according to the methodology in [3]. Figure 2 shows an excerpt of the
knowledge base of hardware parts and hardware subparts. We can see various well known
parts like cpus, caches and converters and memories. But also very domain related ones known
only to experts, like adcs, amplifiers, clocks, alus, buffers and capacitors. The converter class
is highlighted as we will have a closer look at it later in the analysis and after applying our
presented method.

This paper is structured as follows: In section 3 we introduce state of the art in the related
field and draw comparisons and conclusions to our work. In 4 we show the approach and some
1https://chowlk.linkeddata.es/notation.html



Figure 2: Sample of classes in the hardware category

implementation details, in section 5 we show the results, outline an evaluation and finish with
a discussion. In section 6 we conclude and mention future work.

3. State-of-the-Art

Building knowledge graphs either manually with a systematic requirements and knowledge
engineering approach or automatically using algorithms and programming or machine learning
is a focus of past and current research [4]. McGuinness guide in [5] or the pizza tutorial 2are
the beginners first go to, but often knowledge engineers have to go through many hand picked
papers in order to develop their skills and expertise.

Some approaches do automate the construction process in using machine learning approaches
as in [6]. They populate an ontology with a relation extraction to a certain domain from text.
Another approach in [7] constructed ontologies from online ontologies. Further ontology rank-
ing, mapping, merging and evaluation were used in addition and in complement. Automating
ontology creation can increase ontology adoption, use and put creating knowledge graphs in the
hands of many due to its added value. Those ontologies however may suffer from inconsistencies
and contradictions. So reasoning is necessary to assure a certain coherence and quality for
and of the ontology. Using OWL also provides well defined and formal semantics to represent
logical base assumptions of knowledge. OWL is relatively expressive and makes reasoning on it
available through well know reasoners like Konclude [8] and Pellet.
Hybrid AI approaches with neural networks and OWL-DL 2 reasoning like proposed in this
work are rare. This and the next paragraphs establish a representative baseline and context
for current comparable works. [9] uses machine learning to summarize text and combines this
with a measure to calculate several centrality metrics, which improves finding and selecting
the best node / class. Instead of using metrics, we employ OWL-DL 2 reasoning to find more
accurate classes and solve contradictions. Some related work employs graph embeddings for
neural networks [10, 11]. Others usually construct the knowledge graphs without reasoning.
[12, 13] are some selected examples. [14] does a kind of reasoning in an interactive navigation

2https://drive.google.com/file/d/1A3Y8T6nIfXQ_UQOpCAr_HFSCwpTqELeP/view



robot system with question answering by matching a commonsense ontology with a home
ontology and inferring relationships and classes.
There are various reasons that approaches like this one are rare. To name probably the first
one is reasoning speed with large graphs and networks which is a challenge [15]. Further
most ontologies are not build expressively and are rather used as domain models, where the
atomic class is the central part. For example, [16] and [17] give an overview of reasoning
over knowledge graphs and there are other contributions, which focus on different kinds of
reasoning, e.g. rule based reasoning [18]. Entity prediction, where we find the authors combine
either LSTM [19] or reinforcement learning with reasoning over graphs [20] has been developed.
Further there are approaches from relation prediction [21] to query based reasoning [22].
Bringing quality assurance into large graphs is a major and challenging task and is currently
emerging in recent contributions like [23]. In our work we refer to the quality metrics mentioned
in3. Our approach contributes to quality assurance in the metrics of succinctness and coherency.
It can be classified as hybrid and with machine learning and ontology-based reasoning with
human-machine interaction. The content of language models can be directly crawled and
translated [24] as well and needs to be mentioned as related work.

4. Approach and Method

4.1. The concept and overall framework

Figure 3: Architecture of hybrid approach with human in the loop

In this section we will go step by step through the concept and the framework. Figure 3
illustrates the approach. We start in the middle with the knowledge graph stored in OWL. The

3https://www.emse.fr/˜zimmermann/KGBook/Multifile/quality-assessment/



graph needs to be represented in OWL in order to execute reasoning on it. We translate from
two formats into OWL. On the right to the knowledge graph we see the "System Markdown
Language" [25]. This language is based on Markdown and a SysML v2 Metamodel and mapped
to OWL. It serves system modelers as input and access to the knowledge graph with the frontend
AGILA. With the tool specifications can be defined and constraint analysis calculated. Now the
reasoner (Konclude [8]) is applied to the graph. All the graph contents are then represented
and saved in the Neo4J database 4 (with help of the neosemantics library). This results in
several single, but also overlapping graphs. Table 1 gives an overview and explanation. We
distinguish between the complete graph, a consistent graph, which pass the reasoner tests and
an inconsistent graph, which causes errors in the consistency check of the reasoner. Additionally
there are unclassified classes, which are not assigned. The human acquired part (arrow on the
right) is not considered here, as it is out of scope of this paper. Since the graph is partitioned
now, we do know that there are errors in the graph and can correct them. The classes from
the inconsistent knowledge graph are then removed from the tagging dataset in the next step.
This step is essential to let the transformer / bi-LSTM improve its predictions automatically.
More details on this are given in the separate section 4.4. Additionally, the user can view the
inconsistent graph and make corrections directly in protege. The ontology file is connected to
the dataset .csv table file and automatically updates changes by the user. The table file follows a
Part-of-Speech (POS) Tagging structure, which aids the neural networks training in recognising
context.

The transformer finally based on the dataset generates predictions on new input text and with
a python library creates a pickle (.pkl) graph. We export the pickle graph into JSON. The second
format then is JSON, which again gets translated into the OWL knowledge graph. Relationships
that are generated from JSON to OWL are all established using the "some" restriction. In
combination with the disjoint classes and the "only" restrictions from the vocabulary the
reasoning is accomplished. For the translation we used Owlready2, which is similar to the OWL-
API, but based on python instead of Java. This then closes the loop. The output of our natural
4https://neo4j.com/

Table 1
Graph Partitioning

Graph Partition Partition Description

Basic Formal Ontology
top-level ontology to distinguish fundamental concepts like objects,
processes and functions

GENIAL! Basic Ontology
electronic domain ontology to describe hardware, software and systems,
properties, functions, but also dependencies and mechanical parts.
Contains all axioms

complete graph
complete NLP generated graph of our current dataset, containing
classes, instances and object properties

consistent graph contains entities that pass the Konclude / Pellet consistency reasoning
inconsistent graph contains entities that do not pass the consistency reasoning

unclassified graph
contains classes and individuals which are not allocated to a GENIAL!
Basic Ontology (GBO) class



language processing (NLP) model provides us with triples comprising a head, type, and tail.
Additionally, we leveraged the results of the tagging process from the GBO ontology to establish
basic subclass/superclass relations. For example, classes that were tagged were assigned those
tags as superclasses in the graph. Basically, if the term cpu is tagged as a hardware part, then the
term cpu will have the hardware part class from GBO as its parent class. Some other subclass
assignments were established that create obvious taxonomic relationships. The following sums
up the approach for generating graphs:

1. Feeding the transformer model REBEL our dataset
2. Adding the classes, instances and object properties between classes to our ontology
3. Reason on the ontology to extract the machine-generated consistent ontologies
4. Store the parts of the graph in OWL files as well as Neo4j database
5. Update the dataset according to the reasoning results

4.2. Natural language processing

Wikipedia articles and other scientific text pieces, that dealt with the microelectronic domain,
were used to train and classify text based on the GBO classes. The first step was to merge the
results of the tagging system and the generated triples. The triples were first generated using a
bidirectional long short-term (bi-LSTM) neural network model. Bi-LSTM models allow inputs
to travel backwards and forward. The hidden layers of the network are connected to the same
output. The task was divided into two parts. The first part was to classify sample occurrences
into our predefined classes. This task could be referred to as Named Entity Recognition (NER) -
with our custom GBO classes. The second step was to generate a graph that aligned with the
relationships in the GBO. The NER task used the bi-LSTM model with 5 layers and 21 different
types of labels. All hyper-parameters such as the LSTM units and dropouts were adjusted
with experimentations. The training was carried out for 50 epochs with a batch size of 32. We
reached a validation accuracy of 94%. With the predictions of the bi-LSTM, we could generate
graphs. The graphs generator used a rule-based model. We defined a "context" that represented
a small part of the text that kept the interrelated conditions intact. We settled for a context
size of around 10 sentences. The identified (or the predicted) words were then extracted from
the sentences. A simple rule-based model (consisting of a few if-else blocks) was then used to
create relationships between these extracted words [3].

We also used the transformer to generate graphs. This gave us a better insight into the
results produced by the bi-LSTM model. It also helped us compare and choose the better option
in the end. The transformer [26] has surpassed other neural network models, including the
convolutional neural network (CNN) and the recurrent neural network (RNN) for NLP and
language generation tasks. Long-range sequence characteristics are easily captured, and the
architecture scales well with both the quantity of the training data and the size of the model
being trained.

In this method, we converted an original sentence comprising entities and implicit connections
among them into a group of triples that explicitly referred to all those connections. As a result,
we represented the triples as a group of tokens that the model could decode. In order to
produce the correlations in the sentence as triples and reduce the number of tokens that must be



decoded, we developed a reversible linearization, incorporating special tokens. The data from
the dataset served as the input for REBEL, and the output was the linearized triples. REBEL
[27] is an autoregressive approach that frames Relation Extraction (RE) as a seq2seq [28] task.
By pre-training an Encoder-Decoder Transformer (BART) [29] with our new dataset, REBEL
achieved state-of-the-art performance on many RE baselines within a short time of fine-tuning.
Its simplicity made it easy to adapt to new domains or longer documents. Since the same model
weights were utilized after the pre-training phase, there was no need to train model-specific
components from scratch. This made the training process more efficient. The aim of our model
was to create y for a given x, if x was our input sentence and y was the outcome of linearizing the
correlations in x. Utilizing cross-entropy loss in translation to fine-tune BART while performing
a task, we optimized the log-likelihood of producing the linearized triples given the input.

4.3. Data preprocessing

The objective was to combine the results of the NLP phase (bi-LSTM and the triples generated by
REBEL) into a single database and make necessary revisions. Each time a term was tagged and
if the triple (term, subclass of, tag) was missing, it would be added to our database. In addition
to this, we used the triples from the REBEL model which resulted in a coherent ontology that
has a clear base structure. After conducting an analysis of the results of the REBEL model, we
identified certain issues that required attention and subsequently resolved them before using the
database to build the ontology. At first, the transformer generated two relations - use and uses,
so we changed every relation use to uses in the database. Another problem was faulty triples,
where one of them is empty, so those triples were deleted. Also, we had some terms that were
the same except one was uppercase and the other was lowercase. As a solution, all uppercase
letters were changed to lowercase to avoid having two classes representing the same concept.
Some classes had multiple inheritances for one superclass causing an "Uncaught Exception in
thread ’partitioning’ " error. To resolve this, we deleted the first occurrence of subclass of that
resulted in a cycle. This was an adhoc decision and would be evaluated further in the future. So
the result of this part is our new database that contains various relations including subclass of
relations which would be used next to build the ontology.

4.4. Implementation

4.4.1. Reasoning

We had two approaches for reasoning. The two are slightly different but aim for the same results,
which is to extract a machine-generated consistent graph and machine-generated inconsistent
graph (both abbreviated mgg). And both used the well-known reasoner Konclude.

• First implementation: Our first implementation was to reason after the complete graph
is created. So after we have our graph built, we reason on all the classes and delete
each and every inconsistent class from our machine-generated graph to develop the
machine-generated consistent ontology. Then we link those deleted classes to the GBO
ontology to create the machine-generated inconsistent graph. The downsides or results
of this approach are that some classes that are a subclass of an inconsistent class will be



flagged as inconsistent. Another downside is that some of the GBO classes can still be
inconsistent. Thus another approach for the implementation was taken.

• Second implementation: Due to the downsides of the first approach, the second one was
developed. Instead of reasoning after creating the graph, we reason while creating it. So
after adding each class, we check with konclude, if a class / individual is consistent or not.
If it’s not consistent, then we delete it from our graph / ontology. But that in itself is not
sufficient, since we also need to check after adding each relation if one of the axiomatically
associated / linked classes became inconsistent. If it did become inconsistent, we removed
it as well. Also if the class is from the GBO ontology, we removed the relation between
the two classes, instead of deleting the GBO class itself. We have again generated the
machine-generated consistent graph file and then we used the deleted classes to build the
machine-generated inconsistent graph.

We used labels for synonyms and use natural language spaces, also because the IRI of a class
isn’t allowed to include symbols. Further adding labels with natural language spaces, improves
the readability and is a best practice. The github repository of the implementation can be found
here .5

4.4.2. Human-machine interactive feedback loop

This ontology graph is not our only result but also we have corrected the tags of our BI-LSTM
using the inconsistent ontology file. So every class in the inconsistent ontology file was there
because it had the wrong tags. So as a correction we did go through all those classes and then
changed the tags in our csv file. This closes our loop. From tagging and creating the triplets to
building our ontology to using this ontology to change the tags. By repeating this cycle, we can
continuously enhance our outcomes.

4.4.3. Closing the feedback loop with human interaction

One method of closing our feedback loop is to use human interaction. The python script opens
exactly in the position of the wrong tag and gives the user options to change the tag manually
or to write or to type which tag should be in this position.

As we see in figure 4, at first the exact line 7 was opened then the feedback "hwp" (which is
the tag for hardware part) was given so cpu´s tag was changed to B-hwp. Then the exact line
35 was opened and the input "all cpu" was given. Then all the occurrences of cpu will be tagged
as hwp. After this the script will go to the next inconsistent class until the user fixes all the
incorrect tags. Since the current context is only microelectronic documents, we included that
aid, as we expect wrong corrections rather improbable.

4.4.4. Closing the feedback loop with machine automatic corrections

Another way to close the loop is done by making machine automatic corrections. Not only is
the human in the loop, but the results of the machine, e.g. the reasoning process are considered.
5https://github.com/OntologyResearcher/Supplementarymaterial



Figure 4: Example of human assisted correction

For example, the reasoner classifies something as inconsistent in the ontology, e.g. a hardware
part that needs to be a system. The created inconsistency, which is the wrongly classified class
as the tag from the dataset, will then first be removed. By having the loop the dataset is updated
and as a consequence the predictions also change and improve, which again influences other
tags.

5. Results

5.1. Resulting Knowledge Graph

Figure 5: Graph metrics overview

We explore first the results of creating the ontology. We use protege to visualize the ontology,
metrics are given in figure 5. The ontology has 3623 classes, 93 object properties, 239 individuals,
17399 axioms, and 8373 "subclass of" relations. Which is considerably larger than the manually
developed models for specific use cases, that we were able to create in the past with considerable
amounts of invested time and manual effort.

We already introduced an excerpt of the complete graph in Figure 2. Figure 6 shows the
"hardware element" or hardware class from GBO. It has "hardware component","hardware



elementary subpart" ,"hardware part" and "hardware subpart" as subclasses. Here we show just
the hardware part class of the inconsistent graph. We see that this class has many subclasses like
adc, clock generator, cpu, crystal resonator, disks flash memory, serial ata and others. Which
are often indeed hardware parts, but are inconsistent. Again those classes are machine-created
and also machine classified as hardware part.

Figure 6: Inconsistent ontology OWL file overview with class "clock generator"

For example the class "clock generator" is inconsistent, because we have the rule that "hard-
ware component", "hardware elementary subpart", "hardware part" and "hardware subpart" are
disjoint classes. And the class clock generator is directly a subclass of "hardware component"
and "hardware part." For this reason it is deleted from the main ontology and added to the
inconsistent graph file.

5.2. Evaluation

We evaluated the results according to the several metrics of conciseness and consistency.
Conciseness refers to "avoiding schema and data elements irrelevant for the domain." (see
footnote 3) Consistency measures the degree to which "(i.e., inconsistencies) with respect to
the particular logical entailment considered." (see footnote 3) In order to handle complexity,
we used only the transitive "has_part" relationship for classification rather than the "has_part_
directly" object property. This is equivalent with a less strict sorting out. First, we quantitatively
measured the percentage of classes that the reasoner categorized. We counted the inconsistent
and consistent classes with proteges metrics and subtracted the classes of both BFO and GBO.
Whereas in the whole graph we did not subtract, as we see both ontologies as an integral
element; unclassified classes were also counted directly. Table 2 gives an overview. Second,
the amount of spared time by the knowledge engineer is significant. As the amount of data
and its connections are hard to comprehend. This methods makes this process supervisable.
Apart from the number of connections, some evaluations and considerations might simply be
missed. The next paragraph gives examples. Third, we decided to qualitatively analyze and



Table 2
Graph Partitioning after Reasoning

Graph Partition Amount of Occurrence

unclassified classes 2218
unclassified individuals 239
GBO classes 83
inconsistent classes 165 (248-83)
inconsistent individuals 9
consistent classes 3399 (3482-83)
consistent individuals 194
complete graph classes 3623
complete graph individuals 239

evaluate the results and discuss their significance. Here, we exemplify the results based on
examining the correctness through disjointness of the classes as well as the categorization
through the "has_parts" relationship. Figure 7 gives a sample of a few inconsistencies detected
by the reasoner. In the following we will give explanations to each (1-5) case:

1. "moving coil motor" appears to be an unexpected classification by the neural net trans-
former, which puts it as a subclass of actuator (not hardware component) and contradicts
our vocabulary.

2. "rop" appears at first glance to be an abbreviation of a hardware part. Examining the
training dataset clears up the reason for the inconsistency. Rop is once classified as an
abbreviation of "render output pipelines", a hardware part. And on another occurence as
an abbreviation of "return oriented programming", a software. Both terms are merged in
our graph and thus create the inconsistency, because the abbreviation is referring to two
different entities.

3. "calculation pipeline" was identifiably falsely assigned as a function in the tagging dataset
by our trainee. The transformer in this case was correct by classifying it as a type of alu
(arithmetic logic unit). In combination with our ontology the error was recognized.

4. here we see the "converter" class and its relationships. This class has as a part ("has_part")
a clock. For example, in digital-to-analog converters (DACs) and analog-to-digital con-
verters (ADCs), a clock is often used to synchronize the conversion process. Also this
class has as a part a comparator. In ADCs, the comparator is used to compare the input
analog signal to a reference voltage and generate a digital output based on the result of
the comparison. And this class uses some signal processing. In the context of converters,
signal processing is used to transform the input signal into a format that can be processed
and converted into the desired output signal. The color green indicates that the converter
in itself is a consistent class. However, its relationships where removed, since both the
comparator and the clock where found to be inconsistent classes.

5. "snr" (signal to noise ratio) was correctly tagged in the dataset as a quanitity and thus
correctly placed in the graph. The transformer neural network however, decided due to
context to place the snr as a subclass of adc (as well as create the "facet_of" relationship).
An adc is a hardware part though, creating the inconsistency.



Figure 7: Examples for inconsistencies with disjointness axiom and "has_part" object property

Overall the dataset was quantitatively improved by 4.7 % in coherency with inconsistency
analysis alone. The question of relevancy is of similar importance to improve graph quality. The
removing of unclassified classes achieved an improvement of 62,7 % in conciseness. Altogether
our method improved our knowledge graph about 67,4 %. Table 3 summarizes the results.

Table 3
Quantification of Evaluation

Metric Percentage of Improvement

unclassified removed classes 62,7%
inconsistent removed classes 4,7%
overall removed classes 67.4%

5.2.1. Discussion

This subsection puts the results into context and discusses them. Unclassified classes might be
part of the correct graph but are just not classified, thus being falsely not classified. We always
also have to weigh the NLP side of the classification when we want to assess a somewhat more
complete or so called "absolute" correctness. It is important to put the results into context and
discuss them to ascertain the meaning and understand the significance. For one we need to
consider the current NLP accuracy of our transformer and training, which depends on the actual
word of the vocabulary and is between 36-78 percent (F1 score, see [3]). These result depend
on the dataset, how many samples have been used for training and depend on the word or
tagging term. Other possible errors can be made by the transformer, the tagger and the quality
or origin of the dataset. Things considered, sorting out with disjointness is a valuable addition
to the construction process. Additional axioms and object properties (like "has_parts") are



further expected to yield improvements. Coherency and succinctness are valuable construction
metrics and it seems reasonable and preferable to follow the approach and dictum of quality
over quantity.

6. Conclusion

This paper proposed a novel approach to building knowledge graphs with integrated reasoning.
The approach sorts out inconsistent classes, relationships and instances and thus improves
fitness for purpose of our knowledge graph in context of above discussion in a margin of
up to 67,4 percent. By separating the graph into parts, the knowledge engineer is presented
with only the erroneous parts, thus simplifies his work and makes it easier to oversee. As the
approach is integrated with the dataset, the NLP accuracy is improved automatically by the
knowledge engineers revision. The approach is demonstrated in the area of system engineering
and electronics, but can easily be extended to other domains. To reapply the approach can
already be done with a few disjoint classes that are used for training. Neural networks, such as
transformers, large language models, Bi-LSTM or deep learning and machine learning can be
applied in general. A more expressive ontology further increases the impact of our approach,
as well as a systematic building approach with an upper ontology. Our work has various
steps, but we made sure it is reusable for future engineers and people interested in using the
approach. What is to be adapted is creating another ground ontology similar to GBO, that
suits the aimed domain and tagging with other classes. Then the according automation can be
used to finish generating the graph and recreate the mentioned feedback loop. This allows to
create various ontologies and graphs in various domains with less inconsistencies. For example
using a general "component" definition, which includes all of our parts. That can then also be
matched accordingly. In future works we plan to incorporate more quality assurance aspects in
automated ways and want to scale our approach. Rules, algorithms and reinforcement learning
is further planned automation.
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